
Yolanda Gil and Eric Melz

ISI Technical Report ISI/RR-96-436

Explicit Representations of Problem-Solving Strategies

to Support Knowledge Acquisition

Abstract

USC/Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292

gil@isi.edu, melz@isi.eduemail:

A shorter version of this paper will appear in the Proceedings of the Thirteen National

Conference on Arti�cial Intelligence (AAAI-96), Portland, OR, August 4-8, 1996.

Role-limiting approaches support knowledge acquisition (KA) by centering knowledge base

construction on common types of tasks or domain-independent problem-solving strategies. Within

a particular problem-solving strategy, domain-dependent knowledge plays speci�c roles. A KA tool

then helps a user to �ll these roles. Although role-limiting approaches are useful for guiding KA,

they are limited because they only support users in �lling knowledge roles that have been built in

by the designers of the KA system. EXPECT takes a di�erent approach to KA by representing

problem-solving knowledge explicitly, and deriving from the current knowledge base the knowledge

gaps that must be resolved by the user during KA. This paper contrasts role-limiting approaches

and EXPECT's approach, using the propose-and-revise strategy as an example. EXPECT not only

supports users in �lling knowledge roles, but also provides support in 1) adapting the problem-

solving strategy, 2) changing the types of information to be acquired about a knowledge role,

3) adding new knowledge roles, and 4) acquiring additional background information about the

domain needed by the knowledge-based system. EXPECT's guidance changes as the knowledge

base changes, providing a more
exible approach to knowledge acquisition. This work provides

evidence supporting the need for explicit representations in building knowledge-based systems.

et al.

et al.

1 Introduction

Role-limiting approaches have been the main focus of research in knowledge acquisition

(KA) tools for knowledge-based systems construction for over a decade [Birmingham and

Klinker, 1993]. Several researchers have identi�ed commonly occurring, domain-independent

problem-solving strategies or inference structures that are useful for describing the reason-

ing behind knowledge-based systems [McDermott, 1988, Clancey, 1985, Chandrasekaran,

1986]. These problem-solving strategies determine the roles that domain-dependent knowl-

edge plays. The task of a KA tool, then, is to guide users in �lling out those roles. Several

such tools have been built to support KA for a speci�c problem-solving strategy: SALT

for propose-and-revise [Marcus and McDermott, 1989], MOLE for cover-and-di�erentiate
[Eshelman, 1988], PROTEGE for skeletal plan re�nement [Musen, 1989], etc. Each tool

was designed for a speci�c strategy and could be used in principle to acquire knowledge for

any application whose problem-solving behavior could be cast in terms of that strategy. In

role-limiting approaches to KA, knowledge roles strongly determine what kinds of knowl-
edge need to be acquired, and the dialogue with the user is centered on the acquisition of
domain-dependent knowledge to �ll these roles.

Although having a role-limiting strategy provides very strong guidance for knowledge
acquisition, these tools lack the
exibility that knowledge-based system construction needs
[Musen, 1992]. The problem-solving structure of an application cannot always be de�ned
in domain-independent terms, as Musen explains was the case with R1 [McDermott, 1982].
Furthermore, one single problem-solving strategy may not address all of the particulars of
an application, simply because it was designed with generality in mind.

More recent approaches to KA overcome these limitations by o�ering the system builder

a library of �ner-grained problem-solving strategies whose components can be used to put
together a knowledge-based system [Puerta , 1992, Runkel and Birmingham, 1993,
Klinker , 1991]. Each problem-solving strategy is then associated with a KA tool
speci�c to that strategy. The components of the library can be designed to be as small-
grained as necessary to be useful in system construction. These frameworks provide more

exibility because the overall problem-solving strategy can be customized to the needs of

the application. However, their support to the user is still limited to �lling knowledge roles
that have been identi�ed beforehand by the designers of these components. The kinds of

modi�cations to the problem-solving strategy are limited to exchanging one component for

another in the library. Also, a KA tool needs to be built for every problem-solving strategy.
EXPECT [Swartout and Gil, 1995, Gil, 1994, Gil and Paris, 1994] takes a di�erent ap-

proach to knowledge acquisition. The problem-solving strategy is represented explicitly, and
the knowledge acquisition tool reasons about it and dynamically derives the knowledge roles

that must be �lled out, as well as any other information needed for problem solving. Be-
cause the problem-solving strategy is explicitly represented, it can be modi�ed, and as a

result, the KA tool changes its interaction with the user to acquire knowledge for the new

strategy. Only one KA tool needs to be built, because it can identify knowledge gaps for any

problem-solving strategy that can be explicitly represented in EXPECT. EXPECT provides

greater
exibility in adapting problem-solving strategies because their representations can
be changed as much as needed. Because the systems that have been built to date with

1

1

1

et al.

et al.

2 Role-Limiting Methods: the Case of Propose-and-

Revise

The problem-solving strategies used in these systems are not domain-independent. [Gil, 1994] shows

examples of EXPECT's knowledge acquisition tool in a domain for transportation planning to do plan

evaluation, and [Gil and Tallis, 1995] shows examples of a molecular biology domain that uses a kind of

skeletal plan re�nement.

EXPECT do not use a domain-independent problem-solving strategy , it is hard to com-

pare role-limiting approaches with EXPECT's approach of having explicit representations

to guide knowledge acquisition. This paper illustrates how EXPECT's knowledge acquisi-

tion tool works when the system is using a speci�c problem-solving strategy. This allows a

more detailed comparison with role-limiting approaches and shows that EXPECT not only

supports users in �lling out knowledge roles, but extends the support to acquire additional

knowledge needed for problem-solving|a process that role-limiting approaches to KA do

not support.

To show how EXPECT works with a role-limiting strategy we chose propose-and-revise,

one that has been the focus of much recent work within the KA community. [Schreiber and

Birmingham, 1994]. Propose-and-revise was �rst identi�ed as the problem-solving strategy

used in VT, a system for elevator con�guration [Marcus , 1988]. Perhaps the main

reason for the interest in propose-and-revise is that the VT domain has been used as a

common domain for the Sisyphus e�ort within the KA community, where research groups
are invited to show their solutions to a common problem to allow comparisons among the

di�erent frameworks [Schreiber and Birmingham, 1994]. The main sections of this paper
compare EXPECT with SALT [Marcus and McDermott, 1989], the prototypical KA tool
that uses a role-limiting approach for that problem-solving strategy. Contrasting EXPECT
with SALT is useful to illustrate the main points of this work, but at the end of the paper
we compare EXPECT with more recent approaches to building knowledge acquisition tools.

Because the VT domain takes a signi�cant amount of time to implement, we used instead
a smaller domain for U-Haul c rentals|one that also uses propose-and-revise, designed by
the PROTEGE group at Stanford University, and used in their own work [Gennari ,
1993]. This domain was su�cient to allow us to implement propose-and-revise in EXPECT
and to enable a more direct comparison of its KA tool with other approaches.

The paper begins by describing propose-and-revise and its use in a role-limiting tool for
knowledge acquisition. Then we describe how propose-and-revise and the U-Haul domain
were implemented in EXPECT. Section 4 describes EXPECT's knowledge acquisition tool.
Section 5 shows several examples of how EXPECT can acquire knowledge for propose-and-
revise and also support users in acquiring additional types of knowledge. We then compare

EXPECT's approach with recent KA tools and approaches that have been used for propose-

and-revise.

This section reviews the basic propose-and-revise problem-solving strategy, and then brie
y

presents how SALT guides knowledge acquisition using propose-and-revise in a role-limiting
approach.

2

Propose-and-revise

parameters

constraints �xes

extension revision

et al.

schema

2.1 Solving Con�guration Design Tasks with Propose-and-Revise

2.2 Knowledge Acquisition for Propose-and-Revise in a Role-

Limiting Tool

1 Constrained value: CAR-JAMB-RETURN

2 Constraint type: MAXIMUM

3 Constraint name: MAXIMUM-CAR-JAMB-RETURN

4 Precondition: DOOR-OPENING = SIDE

5 Procedure: CALCULATION

6 Formula: PANEL-WIDTH * STRINGER-QUANTITY

7 Justification: THIS PROCEDURE IS TAKEN FROM INSTALLATION MANUAL I, P. 12b.

is a problem-solving strategy for con�guration design tasks. A con�gura-

tion problem is described as a set of or variables (input parameters have values,

output parameters do not), a set of , and a set of to resolve constraint vi-

olations. A solution consists of a value assignment to the output parameters that does not

violate any constraint.

Propose-and-revise constructs a solution by iteratively extending and revising partial

solutions. The phase consists of assigning values to parameters. In the

phase, constraints are checked to verify whether they are violated by the current solution

and, if so, the solution is revised to resolve the violation. Violated constraints are resolved

by applying �xes to the solution. A �x produces a revision of the solution by changing the

value of one of the parameters that are causing the constraint violation.

Propose-and-revise was �rst de�ned as a problem-solving method for con�guration in

VT [Marcus , 1988] for designing elevator systems. Input parameters for VT included

features of the building where the elevator was to be installed. Output parameters included
the equipment selected and its layout in the hoistway. An example of a constraint is that a
model 18 machine can only be used with a 15, 20, or 25 horsepower motor. An example of a
�x for a violation of this constraint is to upgrade the motor if the current con�guration was
using one without enough horsepower.

SALT [Marcus and McDermott, 1989] is a knowledge acquisition tool for propose-and-revise
using a role-limiting approach. In this problem-solving strategy, there are three types of

knowledge roles: 1) procedures to assign a value to a parameter, which would result in a
design extension, 2) constraints that could be violated in a design extension, and 3) �xes for
a constraint violation. Consequently, the user can enter one of the three types of knowledge:
PROCEDURE, CONSTRAINT, and FIX. For each type of knowledge, a �xed menu (or

) is presented to the user (in SALT's case a domain expert) to be �lled out. An

example of the information provided by a user for a constraint is as follows (from [Marcus

and McDermott, 1989]):

The �elds to be �lled in by the user include the value constrained (1), the nature of the

limit that the constraint imposes on the value (2), and a procedure for specifying a value

for the constraint (6). SALT includes special-purpose modules to support the user in �lling

up these schemas. For example, it checks that the formula is correct and that it references

variables that have been de�ned by the user.

3

�

�

�

�

�

�

et al.

et al.

One great advantage of role-limiting strategies is reuse. A tool like SALT can be used

to acquire knowledge in other applications that use the propose-and-revise strategy. The

problem-solving strategy would be the same, thus saving a lot of e�ort in building a new

system. Only the domain-dependent knowledge roles would need to be acquired. Parts of

the KA tool would have to be adapted in the way the knowledge roles are �lled (such was the

experience reported when using SALT for a
ow-shop scheduler [Marcus and McDermott,

1989]).

But because role-limiting approaches to KA constrain so strongly the kind of knowledge

that they can acquire, they are limited in that they can only do that form of knowledge ac-

quisition. As a knowledge acquisition tool, SALT was speci�cally built for a type of problem

solving strategy (i.e., propose-and-revise) that used certain types of knowledge (procedure,

constraint, and �x). Its interaction with the user can never change unless, of course, SALT

itself is reprogrammed. As a result, SALT is not very adaptable as a knowledge acquisition

tool. For example, SALT could not be used in an application domain that required using
domain knowledge to select a preferred �x, because such a knowledge role does not exist in

SALT's propose-and-revise strategy. The schemas cannot be changed either. For example,
suppose that the user wanted to add numerical priorities to specify which constraints should
be preferred over others when resolving violations. The schema for acquisition of constraints
would have to be modi�ed. Furthermore, this would require changing the implementation
of propose-and-revise so that it would use this preference information in the revision phase.

Special-purpose modules are needed to acquire some speci�c kinds of knowledge. For
example, there is a consistency checker for the formulas in the constraint schemas. The
values of the input parameters are also acquired through an interface that was speci�cally
designed for the elevator application.

SALT does not provide support in updating or maintaining the knowledge about elevator

components. This would be a very useful capability, since product knowledge changes at a
high rate (40-50 percent per year is the rate reported for con�guration systems such as R1
and PROSE [McDermott, 1982, Wright , 1983].)

The essence of the argument made here about SALT applies to other role-limiting KA
tools such as MOLE, [Eshelman, 1988], MORE [Kahn , 1985], and PROTEGE [Musen,

1989]. To summarize, the main limitations of role-limiting approaches to knowledge acqui-
sition in terms of their lack of
exibility are:

schemas cannot be changed to acquire new information about existing knowledge

roles
the problem-solving strategy is �xed and cannot be adapted or augmented

new knowledge roles cannot be added
the input parameter values to be acquired are �xed

there is no support to change the domain-speci�c factual knowledge, e.g., about

the equipment to be used in the con�guration
special-purpose modules are needed to support the acquisition of certain kinds

of knowledge, e.g., the constraint's formulas

Section 5 shows how EXPECT supports the acquisition of these kinds of knowledge.

We do not claim that EXPECT can support any kind of user in making these changes

to the knowledge-based system. For example, domain experts will not normally have the

4

2

2

r-

Loom

Loom

Loom

3 Explicit Representations in EXPECT

By convention, we denote relation names with the pre�x .

background knowledge to change a problem-solving strategy, which will normally require

knowledge engineering skills. The focus of our work is to show that it can be done using a

single KA tool that is independent of the problem-solving strategy used.

Before describing our implementation of propose-and-revise, we brie
y present EXPECT's

approach to representing knowledge. We will concentrate on presenting background that

is directly relevant to the work presented here. More details about the architecture and

knowledge acquisition tools can be found in [Gil, 1994, Swartout and Gil, 1995, Gil and

Paris, 1994].

In EXPECT, both factual knowledge and problem-solving knowledge about a task are

represented explicitly. This means that the system can access and reason about the repre-
sentations of factual and problem-solving knowledge and about their interactions. Factual

knowledge is represented in [MacGregor, 1991, MacGregor, 1988], a state-of-the-art
knowledge representation system based on description logic. Every concept or class can
have a de�nition that intensionally describes the set of objects that belong to that class.
Concept descriptions can include type and number restrictions of the �llers for relations to
other concepts. Relations can also have de�nitions. uses the de�nitions to produce a

subsumption hierarchy that organizes all the concepts according to their class/subclass rela-
tionship. Factual knowledge includes the concept base, the instance base, and the relations
among them.

Problem-solving knowledge is represented in a procedural-style language that is tightly
integrated with the representations. Subgoals that arise during problem solving are

solved by methods. Each method description speci�es: 1) the goal that the method can
achieve, 2) the type of result that the method returns, and 3) the method body containing
the procedure that must be followed in order to achieve the method's goal. A method
body can contain nested expressions, including subgoal expressions that need to be resolved
by other methods; control expressions such as conditional statements and some forms of
iteration; and relational expressions to retrieve the �llers of a relation over a concept. Some

method bodies are calls to Lisp functions that are executed without further subgoaling.
We will give examples of EXPECT's representations using propose-and-revise as a strat-

egy for solving the following type of problems in the U-Haul domain: Given the total volume

that the client needs to move, the system recommends which piece of equipment (e.g., a
truck, a trailer, etc.) the client should rent.

Figure 1 graphically shows parts of the factual domain model for propose-and-revise
and for the U-Haul domain. The upper part of the picture shows factual knowledge that

is domain independent and can be reused for any domain. Constraint satisfaction (CS)
problems are speci�ed with a set of constraints and a state. The state is described with

a set of variables. Constraints can have �xes. In a con�guration problem, the state is a

con�guration. Some of the state variables denote components, i.e., pieces of equipment that

together form a con�guration. A component may have an upgrade, e.g., a more powerful

5

3

3

REVISE-CS-STATE

CHECK-CAPACITY-CONSTRAINT

APPLY-UPGRADE-EQUIPMENT-FIX

This constraint may not be realistic since the client can make several trips but is part of the speci�cation

of the U-Haul domain as it was given to us.

Figure 1: EXPECT's representation of some of the factual knowledge needed for propose-
and-revise problems, for con�guration problems, and for the U-Haul domain. Notice that

the relations across these subdomains are naturally captured in the subsumption hierarchy.

model of that kind of equipment.
The lower part of the picture shows factual knowledge that is relevant only to the U-Haul

domain. One of the state variables denotes the equipment that the client can rent, which

can be a trailer, a rooftop, or a truck. There are several kinds of trucks, ranging from the
smallest EasyMover to the largest HeftyMover.

There is a continuum between the representation of domain-dependent and domain-
independent factual knowledge in EXPECT. They are represented in the same language, yet
they can be de�ned and maintained separately. Once a U-Haul problem is speci�ed as a

kind of con�guration problem, it inherits the fact that it has constraints and �xes. Trucks
are not de�ned as having upgrades, since having upgrades is a way to look at components

from the point of view of con�guration problems. Instead, they are de�ned as con�guration

components, which have upgrades.
Figure 2 shows three di�erent problem-solving methods. is one of the

methods that speci�es how propose-and-revise works. To revise a CS state, we apply the �xes

that are found for the constraints violated in the state. The other two specify a constraint

and a �x in the U-Haul domain respectively. speci�es that the
capacity of the equipment rented cannot exceed the volume that the client needs to move .

applies the �x of upgrading the equipment being rented.
The representation of knowledge about constraints and �xes illustrates EXPECT's sep-

6

Figure 2: Problem-solving knowledge in EXPECT.

arate representations for procedural and factual knowledge. is a �x for
the regardless of how the constraint is checked or how the �x is applied.
Thus, this is represented as factual knowledge as a relation between an instance of con-

straint and an instance of �x, as shown in Figure 1. The procedures to check the constraint

and to apply the �x are part of the problem-solving knowledge base, and are executed as
part of the process to revise con�gurations. Factual knowledge and problem-solving knowl-

edge about constraints and �xes are related because the methods refer to the instances
and in their arguments. This separation of di�erent

kinds of knowledge is key in supporting knowledge acquisition in EXPECT, as will be shown

in Section 5.
Notice that, like factual knowledge, problem-solving knowledge can be domain dependent

or domain independent. EXPECT uses the same language to represent both.

7

(defmethod REVISE-CS-STATE

"To revise a CS state, apply the fixes found for the constraints

violated in the state. The result is a CS state."

:goal (revise (obj (?state is (inst-of cs-state))))

:result (inst-of cs-state)

:method-body (apply

(obj (find (obj (set-of (spec-of fix)))

(for (find

(obj (set-of (spec-of violated-constraint)))

(in ?state)))))

(to ?state)))

(defmethod CHECK-CAPACITY-CONSTRAINT

"To check the Capacity Constraint of a U-Haul configuration, check that the

capacity of the rented equipment is smaller or equal than the volume to move."

:goal (check (obj CapacityConstraint)

(in (?c is (inst-of uhaul-configuration))))

:result (inst-of boolean)

:method-body (is-smaller-or-equal

(obj (r-capacity (r-rented-equipment ?c)))

(than (r-volume-to-move ?c))))

(defmethod APPLY-UPGRADE-EQUIPMENT-FIX

"To apply the Upgrade Equiment Fix in a U-Haul configuration, upgrade

the rented equipment variable. The result is a new configuration."

:goal (apply (obj UpgradeEquipmentFix)

(to (?c is (inst-of uhaul-configuration))))

:result (inst-of uhaul-configuration)

:method-body (upgrade (obj (spec-of rented-equipment-variable))

(in ?c)))

UpgradeEquipmentFix

CapacityConstraint

CapacityConstraint UpgradeEquipmentFix

Loom

4 Knowledge Acquisition in EXPECT

(solve (obj (inst-of uhaul-problem)))

(solve (obj jones-uhaul-problem))

This section brie
y summarizes how EXPECT uses the explicit representations of factual

and problem-solving knowledge to detect knowledge gaps and to guide knowledge acquisition.

More details about EXPECT's knowledge acquisition tool can be found in [Gil, 1994, Gil

and Paris, 1994]. Section 5 will illustrate how EXPECT's KA tool acquires knowledge for

the propose-and-revise and the U-Haul knowledge bases.

EXPECT guides KA by requesting users to resolve errors or knowledge gaps that it

detects in the knowledge bases. EXPECT's problem-solver is designed to detect these errors

and to report them to the KA tool together with detailed information about how they

were detected. The KA tool uses this information to support the user in �xing them.

Other modules that can detect and report errors are the parser (which detects syntax errors

and unde�ned terms), the method analyzer (which detects errors within a problem-solving

method), and the instance analyzer (which detects missing information about instances).

EXPECT's problem-solver can analyze how the di�erent pieces of knowledge in the
knowledge-based system interact. For this analysis, it takes a generic top-level goal rep-
resenting the kinds of goals that the system will be given for execution. In the U-Haul
example, the top-level generic goal would be , and a
speci�c goal for execution would be . EXPECT analyzes

how to achieve this goal with the available knowledge. EXPECT expands the given top-
level goal by matching it with a method and then expanding the subgoals in the method
body. This process is iterated for each of the subgoals and is recorded as a search tree.
Throughout this process, EXPECT propagates the types of the arguments of the top-level
goal, performing an elaborate form of partial evaluation supported by 's reasoning

capabilities. During this process, EXPECT derives the interdependencies between the dif-
ferent components of its knowledge bases. This analysis is done every time the knowledge
base changes, so that EXPECT can rederive these interdependencies.

The design of each module of EXPECT takes into account the possibility that the knowl-
edge base may contain errors or knowledge gaps. For example, EXPECT's problem solver
is designed to detect goals that do not match any methods, and to detect relations that try

to retrieve information about a type of instance that is not de�ned in the knowledge base
(e.g., retrieving the upgrade of a �x when only components have upgrades). In addition to

detecting an error, each module is able to recover from the error if possible, and to report

the error's type and the context in which it occurred. For example, after detecting that a
posted goal cannot match any available method, EXPECT's problem solver would mark the

goal as unachievable and continue problem solving by expanding other goals. It would also
report this error to the knowledge acquisition module, together with some context informa-

tion (in this case, the unmatched goal with its parameters) and a pointer to the part of the
problem-solving trace where the subgoal was left unsolved.

Once the errors are detected, EXPECT can help users to �x them as follows. EXPECT

has an explicit representation of types of errors, together with the kinds of corrections to

the knowledge base that users can make in order to solve them. This representation is based

on typical error situations that we identi�ed by hand. Table 1 shows some of the errors
that can currently be detected by two of the modules: the problem solver and the instance

8

e1

e2

e3

e4

e5

e6

e1

5.1 Acquiring Domain-Speci�c Factual Knowledge

5 Knowledge Acquisition for Propose-and-Revise in

EXPECT

code error or potential problem source suggested corrections

no method found to achieve goal G problem solver modify method body

in the body of method M modify another method's goal

add a new method

modify instance, concept, or relation

role R unde�ned for type C problem solver modify method M

in method M add relation R for type C

expression E in method M problem solver modify method M

has invalid arguments modify another method's goal

modify instance, concept, or relation

expression E in method M problem solver modify method M

has invalid result modify another method's goal

modify instance, concept, or relation

missing �ller of role R of instance I instance analyzer add information about instance

needed in method M modify method body

delete instance

type of instance I is not speci�c enough instance analyzer specialize instance type

as needed in method M modify method body

delete instance

Table 1: Some of the potential problems in the knowledge bases detected by EXPECT. Each
component of EXPECT is able to detect an error, recover from the error if possible, and
report the error's type and context in which it occurred. EXPECT's knowledge acquisition
tool uses this information to support users in resolving errors. Underlined error codes are
used in the examples.

analyzer. The error codes shown underlined will be used in the examples in the next section.
When EXPECT detects an error, it presents the suggested corrections as possible choices

to the user. Consider the case of error , where a goal G in the body of method M cannot
be achieved by any method. EXPECT suggests that the user either 1) modify the body of
method M to change or delete the expression of the goal G, 2) modify the goal of some other
method N so that it matches G, 3) create a new method L whose goal will match G, or 4)
modify an instance, a concept, or a relation that is used in G. We will see in the next section

that the user's choice of one suggestion over the others depends on the context.

In Section 2.2, we pointed out some of SALT's limitations in terms of its lack of
exibil-

ity as a knowledge acquisition tool. In this section, we illustrate how EXPECT's explicit

representations support a more
exible approach to knowledge acquisition.

Suppose that U-Haul decided to begin renting a new kind of truck called MightyMover.

The user would add a new subclass of truck, and EXPECT would immediately request the

9

E1

E2

E2

5.2 Acquiring New Constraints and Fixes

MightyMover

CapacityConstraint

e5

truck

TrailersForNewCarsOnly

(check (obj TrailersForNewCarsOnly)

(in (inst-of uhaul-configuration)))

e1

(check (obj capacityConstraint) (in

(inst-of uhaul-configuration))) (check (obj TrailersFor

NewCarsOnly) (in (inst-of uhaul-configuration)))

e1

following:

|I need to know the capacity of a .

The reason for this request is that EXPECT has detected that the capacity of rental

equipment is a role that is used during the course of problem solving, speci�cally while

achieving the goal of checking the with the method shown in Figure 2.

This corresponds to errors of type in Table 1. While many roles may have been de�ned for

the class (such as make and year), EXPECT will only request the information that is

actually needed for problem solving. The next section illustrates that if any problem-solving

method changes and other information is used, then EXPECT will request information

according to the changes made.

SALT does not provide support in acquiring this kind of domain-speci�c factual knowl-

edge. As we mentioned in Section 2.2, this capability would be very useful to maintain
product knowledge in con�guration systems.

Section 2.2 showed that SALT needs to be given de�nitions of schemas to enter constraints
and �xes. EXPECT does not need to be given such schemas. Instead, the information in
the schemas is naturally requested by EXPECT as constraints and �xes are de�ned by the
user.

Suppose for example that the user wants to add a new constraint that restricts the rental
of trailers to clients with cars made after 1990 only. The user would add a new instance of
constraint: . EXPECT would analyze the implications of this change
in its knowledge base and signal the following problem:

|I do not know how to achieve the goal

.

This is because during problem solving EXPECT calls a method that tries to �nd
the violated constraints of a con�guration by checking each of the instances of constraint

of U-Haul problems. This is a case of an error of type . Before de�ning this new

instance of constraint, the only subgoal posted was
and now it also posts the subgoal

. There is a method to achieve the former
subgoal (shown in Figure 2), but there is no method to achieve the latter.

Notice that with this error EXPECT detects that the addition of a new constraint to
the factual knowledge base requires adding a new method to the problem-solving knowledge

base. This illustrates how EXPECT understands the interdependencies between factual and

problem-solving knowledge and uses this to guide knowledge acquisition.

To resolve , the user chooses the third suggestion for errors of type and de�nes the

following method to check the constraint:

10

E2

E3

E4

E2 E4

E5

(defmethod CHECK-TRAILERSFORNEWCARSONLY-CONSTRAINT

:goal (check (obj TrailersForNewCarsOnly)

(in (?c is (inst-of uhaul-configuration))))

:result (inst-of boolean)

:method-body (is-greater-or-equal

(obj (r-year (r-car ?c)))

(than 1990)))

formula

r-year

e2

r-year car

r-year

is-greater-or-equal

(is-greater-or-equal (obj (inst-of

string)) (than 1990))

e1

r-year

Once this method is de�ned, is no longer a problem and disappears from the agenda.

Notice that with this method EXPECT is acquiring information about a knowledge role.

The new method corresponds to acquiring in SALT the �eld in the schema for the

constraint knowledge role (shown in Section 2.2).

EXPECT's error detection mechanism also notices possible problems in the formula used

to check the constraint. In SALT, these problems are detected by special-purpose code that

checked the validity of formulas. For example, if had not been de�ned EXPECT
would signal the following problem (of type):

|I do not know what is the year of a car.

When the user de�nes the role for the concept this error will go away. EXPECT

can also detect other types of errors in the formulas to check constraints. For example, if
was de�ned to have a string as a range, then EXPECT would detect a problem. It

would notice that there is no method to check if a string is greater or equal than a number,
because the parameters of the method for calculating must be numbers).
EXPECT would then tell the user:

|I do not know how to achieve the goal
.

Like , is an error of type . But in this case the user chooses a di�erent way of
resolving the error, namely to modify the de�nition of the relation .

If the user de�ned a �x associated with the new constraint, then EXPECT would follow

a similar reasoning and signal the need to de�ne a method to apply the new �x.

We pointed out in Section 5.1 that EXPECT changes its requests for factual information
according to changes in the problem-solving methods. This can be illustrated in this example
of adding a new constraint. An e�ect of the fact that the user de�ned the new method to

check the constraint is that new factual knowledge about the domain is needed. In particular,

EXPECT detects that it is now important to know the year of the car that the client is using

(and that is part of the con�guration), because it is used in this new method. The following

request will be generated for any client that, like in this case Mr. Jones, needs to rent U-Haul
equipment:

|I need to know the year of the car of Jones.

This is really requiring that the information that is input to the system is complete in

the sense that con�guration problems can be solved. In SALT, as in many other systems,

11

E5

E1

E1

E5

E6

5.3 Changing the Propose-and-Revise Strategy

e5

(defmethod REVISE-CS-STATE

:goal (revise (obj (?state is (inst-of cs-state))))

:result (inst-of cs-state)

:method-body (apply

(obj (find (obj (set-of (spec-of fix)))

(for

(select ; ******

(obj (spec-of constraint)) ; ******

(from ; ******

(find

(obj (set-of (spec-of violated-constraint)))

(in ?state)))))))

(to ?state)))

(select (obj (spec-of constraint))

(from (set-of (inst-of violated-constraint))))

e5

(defmethod SELECT-CONSTRAINT

:goal (select (obj (spec-of constraint))

(from (?vc is (set-of (inst-of violated-constraint)))))

:result (inst-of constraint)

:method-body (take (obj ?vc)

(with (spec-of maximum))

(of (r-preference

(r-constrained-variable ?vc)))))

the input information (such as client preferences or the building features) is predetermined

at the time the system is de�ned. In EXPECT, the requirements for inputs change as the

knowledge base is modi�ed. Notice that is an error of type , and is detected by the

same mechanism that was used to detect , even though they request conceptually di�erent

types of information: requests information that is relevant to the U-Haul application and

requests information relevant to speci�c client cases.

We pointed out in Section 2.2 that SALT does not allow users to change the problem-solving

strategy or to de�ne new knowledge roles. This section shows how this can be done with

EXPECT.

Suppose that the user wants to change the revision process of propose-and-revise to

introduce priorities on what constraint violations should be resolved �rst. The priorities will
be based on which variable is associated with each constraint.

The user would need to identify which of the problem-solving methods that express
propose-and-revise in EXPECT needs to be modi�ed. The change involves adding a new

step in the method to revise CS states shown in Figure 2. The new step is a subgoal to
select a constraint from the set of violated constraints. The modi�ed method is as follows
(the new step is indicated with stars on the right-hand side):

EXPECT would signal the following request:

|I do not know how to achieve the goal
.

This is an error of type , and it indicates that the user has not completed the modi�-

cation. The user needs to create a new method to achieve this goal as follows:

12

�

�

�

�

�

�

5.4 Discussion

E7

E8

E7

E8

E7 E8

E2

E2 E7

E6

E8

E5

E1

E3 E4

E2 E6

E1 E8

r-preference r-constrained-

variable variable

take

e5

CONSTRAINED VALUE

e1 e5

where is de�ned as a role of variables and has a numeric range, and

is de�ned as a role of constraint and has as its range. The user may also

need to de�ne a new method for the subgoal if there is no such method available.

With these modi�cations to the knowledge base, the propose-and-revise strategy that

EXPECT will follow has changed. Because the representation of the new strategy is ex-

plicit, EXPECT can reason about it and detect new knowledge gaps in its knowledge base.

As a result of the modi�cation just made, there is additional factual information needed

including new information about an existing knowledge role and a new kind of knowledge

role. EXPECT would then signal the following requests (both of type):

|I need to know the constrained variable of TrailersForNewCarsOnly.

|I need to know the preference of equipment-variable.

is one of the �elds in SALT's constraint schema shown in Section 2.2, which was
called . is a new knowledge role centered around the notion of variables.
In SALT, making the change just described to the revise strategy would have required
reprogramming the tool to change the problem-solving method and to add a new schema

for the new knowledge role VARIABLE that would acquire preferences for each variable or
parameter.

and illustrate that EXPECT has noticed that the change in the problem-solving
strategy requires the user to provide new kinds of information about the factual knowledge
used by the strategy. This shows that in EXPECT the acquisition of problem-solving knowl-

edge a�ects the acquisition of factual knowledge. Recall that illustrated the converse.

To summarize, we revisit SALT's limitations listed in Section 2.2 and point out which of the

errors just discussed illustrate how EXPECT handles knowledge acquisition in those cases:

acquire information about existing knowledge roles according to the current
problem-solving strategy: ,

the problem-solving strategy can be adapted or augmented:
new knowledge roles can be added:

support the user in acquiring input parameter values:

changing the domain-speci�c factual knowledge:
support the user in acquiring speci�c kinds of knowledge: ,

Notice that these errors are detecting conceptually di�erent knowledge gaps, yet they
may correspond to the same error type. Such is the case with and that correspond

to error type , and and that correspond to error type .

Notice that SALT's schema for acquiring constraints (shown in Section 2.2) asks the user
for more information than EXPECT does. For example, SALT requests information about

the precondition, i.e., the situations under which the constraint should be used. SALT uses
this information to determine e�ciently the subset of the constraints that should be checked

in each con�guration. Our current version of propose-and-revise does not use knowledge

13

E7

et al.

et al.

6 Related Work

CONSTRAINED VALUE

about preconditions, so this information is not requested by EXPECT. If we changed the

problem-solving methods so that they check the applicability of constraints according to the

precondition, EXPECT would request this information from the user. Notice for example

that another �eld in the schema for constraint acquisition is , which EX-

PECT did not ask about (see) until the methods were changed to use this information.

Throughout the examples, we have referred to a generic user wanting to make changes

to the knowledge base. This is not necessarily one user, and not necessarily the end user

or domain expert. For example, the end user may only enter knowledge about clients and

new trucks to rent. A more technical user would be able to modify propose-and-revise.

A domain expert who does not want to change the problem-solving methods can still use

EXPECT to �ll up knowledge roles and populate the domain-dependent factual knowledge

base. Supporting a range of users would require adding a mechanism that associates with

each type of user the kinds of changes that they can make to the knowledge base and limiting

the users to make only those changes. The important point is that all the changes, no matter
who ends up making them, are supported by the same core knowledge acquisition tool.

The previous section compared EXPECT with SALT as a prototypical representative of
role-limiting approaches to KA using the propose-and-revise strategy. This section compares

EXPECT with more recent work in knowledge acquisition.
Some recent approaches to KA support knowledge-based system construction by o�ering

libraries of smaller-grained role-limiting strategies that can be composed to create the overall
problem-solving strategy. Such is the approach taken in PROTEGE-II [Puerta , 1992],
DIDS [Runkel and Birmingham, 1993], and SBF [Klinker , 1991]. Modifying a problem-

solving strategy involves changing one component for another one in the library. These
frameworks allow a wider range of modi�cations to a system than tools that use a monolithic,
unchangeable problem-solving structure. However, the kinds of modi�cations are still limited
to what the compositions of di�erent components allow. EXPECT allows even �ner-grained
modi�cations to the problem-solving methods, by adding new substeps and de�ning new

methods to achieve them as we showed in Section 5. The composable role-limiting approaches
provide very limited support if at all to a knowledge engineer who is trying to write a new

problem solving component for the library. EXPECT represents the methods in a language

that the KA tool understands, so it can support the user in making these changes. In
addition, EXPECT's approach requires building only one single KA tool. In fact, in working
out the examples shown in this paper we did not need to change the KA tool or to add new

errors to those that were already de�ned in EXPECT.

The PROTEGE-II and DIDS research groups participated in Sisyphus and have im-
plemented the propose-and-revise strategy [Schreiber and Birmingham, 1994]. This allows

making a more detailed comparison here.
The DIDS framework supports several interesting features that we do not currently sup-

port in EXPECT. DIDS uses the
ow of control speci�ed by the problem-solving strategy to

determine in which order to acquire each type of knowledge. This order helps in coordinating
the KA dialogue for each of the individual methods. We could extend EXPECT to impose

14

et al. et al.

(solve (obj (inst-of cs-problem)) (using (spec-of propose-and-revise)))

an order on the requests to the user based on the subgoal expansion sequence for a method.

Another interesting feature of DIDS is that it allows incorporating special-purpose KA tools,

such as CAD-based acquisition tools that allow users to specify knowledge through drawings.

EXPECT does not have a mechanism to integrate such tools.

PROTEGE-II includes a suite of tools for editing ontologies. Using the ontological def-

initions, these tools can automatically generate customized editors that are accessible to

domain experts. EXPECT currently has very limited capabilities to edit factual knowledge,

and could bene�t from tools that organized requests to the user using appropriate struc-

tures. The library of PROTEGE-II includes not only the problem-solving strategies but also

method ontologies that describe the kinds of domain-independent knowledge used in the

strategies. These method ontologies are then linked by hand to the domain-speci�c ontology

of the application through a speci�c language that is used to compile the ontology links.

In EXPECT, the method ontology would correspond to the upper part of Figure 1 and the

domain-speci�c ontology to the lower part of the �gure. EXPECT uses the same language to
represent both, and both ontologies are linked when the domain-dependent terms are made

correspond to the domain-independent ones. The KA tool can detect missing links because
it can reason about the way factual knowledge interacts with problem-solving knowledge and
detect when the appropriate subgoals are not invoked.

A strong emphasis in both of these approaches is knowledge reuse, i.e., using the same
component of the library for di�erent problem-solving strategies and in di�erent applications.

Reusing a component in the library would be equivalent in EXPECT to invoking a top-level
goal that corresponds to a whole problem-solving strategy (for propose-and-revise that goal
would be). EXPECT
could bene�t from representing the methods that are currently part of these system's libraries
so that they could be used to bootstrap the creation of new knowledge-based systems.

TAQL is a knowledge acquisition tool for weak search methods, i.e., problem-solving
strategies that are more generic than something like propose-and-revise [Yost, 1993]. TAQL
is not targeted for domain experts, but for users that have programming skills. TAQL
provides a language that allows users to de�ne di�erent kinds of problem-solving strategies.
The knowledge roles that need to be �lled out for these strategies are generic roles that are not

dependent on the speci�c strategy de�ned but on the search framework underlying TAQL.
Like EXPECT, in TAQL the KA tool is strategy-independent and can provide guidance that

is based on principles that have broader application than role-limiting approaches do. Some

of the errors that TAQL detects correspond to errors detected by EXPECT. For example
\forgetting to design a problem space" in TAQL corresponds to an error in EXPECT that
a method cannot be found to achieve a goal. Unlike TAQL, we believe that the guidance

provided by EXPECT is accessible to an end-user that is trying to �ll out knowledge roles.

Other work in KA that has studied problem-solving strategies (including propose-and-
revise) concentrates on knowledge modeling issues [Wielinga , 1992, Domingue ,

1993]. EXPECT's KA tool is an implemented system to support users in knowledge base
re�nement and maintenance.

15

7 Conclusion

Acknowledgments

References

The Knowledge Engineering Review

IEEE Expert

Arti�cial Intelligence

et al.

Knowledge Acquisition for Knowledge-Based

Systems: Proceedings of the 1993 European Knowledge Acquisition Workshop

Automating Knowledge Acquisition for Expert

Systems

et al.

Proceedings of the Eighth Knowledge Acquisition for

Knowledge-Based Systems Workshop

Explicit representations of problem-solving strategies can be used to support
exible ap-

proaches to knowledge acquisition. This paper shows how this is done in the EXPECT

framework, using the propose-and-revise strategy as an example. We have also compared how

EXPECT supports knowledge acquisition for this strategy with a well-known tool (SALT)

that was built speci�cally for that method. EXPECT's KA tool is able to acquire the same

kinds of knowledge that a tool like SALT can acquire, as well as additional kinds of knowl-

edge that are useful in constructing a knowledge-based system. EXPECT uses the same KA

mechanisms to acquire both domain-dependent and domain-independent knowledge, and can

do so for any problem-solving strategy that the user de�nes.

We would like to thank Sheila Coyazo, Kevin Knight, Bill Swartout, Marcelo Tallis, Milind
Tambe, and Andre Valente for their comments on this paper. We would also like to thank the
PROTEGE group at Stanford University, and in particular John Gennari, for creating the
U-Haul domain and for making it available to us. We gratefully acknowledge the support of

Defense Advanced Research Projects Agency with the contract DABT63-95-C-0059 as part
of the DARPA/Rome Laboratory Planning Initiative.

[Birmingham and Klinker, 1993] W. Birmingham and G. Klinker. Knowledge-acquisition
tools with explicit problem-solving models. 8(1):5{
25, 1993.

[Chandrasekaran, 1986] B. Chandrasekaran. Generic tasks in knowledge-based reasoning:
High-level building blocks for expert system design. , 1(3):23{30, 1986.

[Clancey, 1985] W. J. Clancey. Heuristic classi�cation. 27:289{350,

1985.

[Domingue , 1993] J. B. Domingue, E. Motta, and S. Watt. The emerging VITAL

Workbench. In N. Aussenac, et al. (eds.),
, Springer-

Verlag, 1993.

[Eshelman, 1988] L. Eshelman. MOLE: A knowledge-acquisition tool for cover-and-
di�erentiate systems. In S. Marcus, ed.,

, pp. 37{80. Boston: Kluwer Academic Publishers, 1988.

[Gennari , 1993] J. H. Gennari, S. W. Tu, T. E. Rothen
uh, and M. A. Musen. Mapping

methods in support of reuse. In

, Ban�, Alberta, Canada, 1994.

16

Proceedings

of the Twelfth National Conference on Arti�cial Intelligence

Knowledge acquisition

Proceedings of the Ninth Knowledge Acquisition for

Knowledge-Based Systems Workshop

et al.

IEEE Transactions on Pattern Analysis and Machine Intelligence

et al.

Knowledge Acquisition

Proceedings of the 1988

National Conference on Arti�cial Intelligence

Principles of Semantic Networks: Explorations

in the Representation of Knowledge

Arti�cial Intelligence

et al.

AI Magazine

Arti-

�cial Intelligence

Automating Knowledge Acquisition for Knowledge-Based

Systems

Machine Learning

Knowledge Acquisition

et al.

Knowledge Acquisition

[Gil, 1994] Yolanda Gil. Knowledge re�nement in a re
ective architecture. In

, Seattle, WA, 1994.

[Gil and Paris, 1994] Y. Gil and C. Paris. Towards method-independent knowledge acquisi-

tion. , 6(2):163{178, 1994.

[Gil and Tallis, 1995] Y. Gil and M. Tallis. Transaction-Based Knowledge Acquisition: Com-

plex Modi�cations made Easier. In

, Ban�, Alberta, Canada, 1995.

[Kahn , 1985] G. Kahn, G. Nowlan, and J. McDermott. Strategies for knowledge acqui-

sition. PAMI-7:511{522,

1985.

[Klinker , 1991] G. Klinker, C. Bhola, G. Dallemagne, D. Marques, and J McDermott.
Usable and reusable programming constructs. , 3(2):117{135, 1991.

[MacGregor, 1988] R. MacGregor. A deductive pattern matcher. In
, St Paul, MN, August 1988.

[MacGregor, 1991] R. MacGregor. The evolving technology of classi�cation-based knowledge
representation systems. In J. Sowa, editor,

. Morgan Kaufmann, San Mateo, CA, 1991.

[Marcus and McDermott, 1989] S. Marcus and J. McDermott. SALT: A knowledge acqui-
sition language for propose-and-revise systems. , 39(1):1{37, May
1989.

[Marcus , 1988] S. Marcus, J. Stout, and J. McDermott. VT: An expert elevator de-
signer that uses knowledge-based backtracking. 9(1):95{112, 1988.

[McDermott, 1982] J. McDermott. R1: A rule-based con�gurer of computer systems.
19:39{88, 1982.

[McDermott, 1988] J. McDermott. Preliminary steps towards a taxonomy of problem-solving

methods. In S. Marcus, ed.,
. Boston: Kluwer Academic Publishers, 1988.

[Musen, 1989] M. A. Musen. Automated support for building and extending expert models.
, 4(3/4):347{375, 1989.

[Musen, 1992] M. A Musen. Editorial. Overcoming the limitations of role-limiting methods.

, 4(2):165{170, 1992.

[Puerta , 1992] A. R. Puerta, J. W. Egar, S. W. Tu, and M. A Musen. A multiple-

method knowledge-acquisition shell for the automatic generation of knowledge-acquisition

tools. , 4(2):171{196, 1992.

17

Knowledge Acquisition

Proceedings of the

Eighth Knowledge Acquisition for Knowledge-Based Systems Workshop

Proceedings of the Ninth Knowledge Acquisition for

Knowledge-Based Systems Workshop

et al.

Knowledge Acquisition

et al.

AI Magazine

IEEE Expert

[Runkel and Birmingham, 1993] J. T. Runkel and W. P. Birmingham. Knowledge acquisi-

tion in the small: Building knowledge-acquisition tools from pieces. ,

5(2):221{243, 1993.

[Schreiber and Birmingham, 1994] G. Schreiber and B. Birmingham, eds.

, Ban�, Alberta,

Canada, 1994.

[Swartout and Gil, 1995] Bill Swartout and Yolanda Gil. EXPECT: Explicit Representa-

tions for Flexible Acquisition. In

, Ban�, Alberta, Canada, 1995.

[Wielinga , 1992] B. J. Wielinga, A. Th. Schreiber, and A. Breuker. KADS: a modelling

approach to knowledge acquisition. 4(1):5{54, 1992.

[Wright , 1983] J. R. Wright, E. S. Thompson, G. T. Vesonder, K. E. Brown,
S. R. Palmer, J. I. Berman, and H. H. Moore. A knowledge-based con�gurator that
supports sales, engineering, and manufacturing at AT&T Network Systems.

14(3):69{80, 1993.

[Yost, 1993] G. R. Yost. Knowledge acquisition in Soar. , 8(3):26{34, 1993.

18

